Journal of Chromatography, 279 (1983) 41-48 Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

CHROMSYMP. 078

# ALUMINIUM OXIDE-COATED FUSED-SILICA POROUS-LAYER OPEN-TUBULAR COLUMN FOR GAS–SOLID CHROMATOGRAPHY OF $C_1-C_{10}$ HYDROCARBONS

R. C. M. DE NIJS\* and J. DE ZEEUW

Department of Research and Development, Chrompack Nederland B.V., P.O. Box 3, Middelburg (The Netherlands)

#### SUMMARY

An aluminium oxide-coated fused-silica porous-layer open-tubular column for gas-solid chromatography of  $C_1-C_{10}$  hydrocarbons is described. The column is highly efficient and can be operated with nitrogen, helium or hydrogen as carrier gases at temperatures up to 200°C. Humidification of the carrier gas is superfluous. The  $C_k$  term in the Van Deemter-Golay equation was estimated and shown to be of the same order of magnitude as the  $C_g$  term. The reproducibility of the retention times in both isothermal and temperature-programmed analyses proved to be excellent. The preparation of the column is described in detail and some applications are shown.

# INTRODUCTION

Aluminium oxide as the stationary phase in gas-solid chromatography (GSC) was succesfully applied in open-tubular columns as early as 1963 by Kirkland<sup>1</sup>. Relatively short columns 25 ft. long and of I.D. 0.25–0.50 mm allowed the separation of fluorinated hydrocarbons at room temperature. These columns were dynamically coated with a colloidal boehmite suspension.

In the same year, Petitjean and Leftault<sup>2</sup> reported the modification of the inside surface of aluminium tubes of I.D. *ca.* 0.5 mm. A layer of active alumina about 5  $\mu$ m thick was formed on the inside wall of the column tubing. Schneider *et al.*<sup>3</sup> published a method for the preparation of glass capillary columns dynamically coated with a thixotropic suspension of aluminium oxide in water, leaving a homogeneous layer of aluminium oxide on the inner column wall.

In 1981 we described the preparation of an aluminium oxide-coated fusedsilica porous-layer open-tubular (PLOT) column<sup>4</sup>. The columns were coated statically with a stabilized suspension of aluminium oxide. Without additional deactivation, the activity of the aluminium oxide surface causes peak tailing. Deactivation with water<sup>5</sup>, potassium chloride<sup>6</sup> or a thin film of a high-boiling liquid<sup>2</sup> has been described.

### PREPARATION ON THE COLUMN

The column was prepared according to Schneider *et al.*<sup>3</sup> with slight modifications. Aluminium hydroxide (Martinal, 95% < 2  $\mu$ m; COMAG, Amsterdam, The Netherlands) was heated for 24 h at 300°C. Of the aluminium oxide thus obtained, 20 g were added to 70 ml of a 5% (w/v) Dispural solution (Condea Chemie, Hamburg, F.R.G.) in 1% (v/v) acetic acid and the mixture was stirred for 10 min in an ultrasonic bath. After filtering the suspension through a 300-mesh wire sieve, the suspension was allowed to age for 24 h. The suspension obtained showed thixotropic behaviour. A 50 m × 0.32 mm I.D. fused-silica column (Chrompack, Middelburg, The Netherlands) was connected to a 25 m × 0.32 mm I.D. fused-silica buffer capillary column with shrinkable PTFE. A plug of 10 m of 1% (v/v) acetic acid was forced through the column.

Subsequently, a 400  $(\pm 1\%) \mu$ l plug of coating suspension was introduced into the capillary by means of a syringe, and the column inlet was connected to a precision needle valve. The pre-pressure at the needle valve was kept at 50 bar and the flowrate set at 4 ml/min. The first plug coated about 50% of the capillary. The column was disconnected from the needle .valve, another 400  $\mu$ l of coating suspension were introduced and the coating procedure was repeated. The second plug of coating suspension coated the fused-silica capillary completely with a homogeneous layer. The buffer column was disconnected and the column was stored for 16 h in a vibration-free location.

The column was then dried in a constant-temperature water-bath by applying a nitrogen pressure of 2 bar. The drying process took about 3 days at 25°C and was followed visually. When it was dry, the column was activated for 3 h heating to 300°C at 10°C/min under 1.0 bar of nitrogen, and subsequently rinsed twice with a 2% (w/v) solution of potassium chloride, forced through the capillary under a nitrogen pressure of 2 bar. The column was dried under a nitrogen pressure of 5 bar for 24 h. Finally, the column was activated at 300°C for 60 min under a carrier gas flow. Columns thus prepared contained 3–4 mg of aluminium oxide per metre.

# **EVALUATION**

# Calculation of $C_g$ and $C_k$

Theory. Giddings<sup>7</sup> investigated in detail the theory of gas adsorption chromatography and the modifications necessary for the Van Deemter-Golay equation expressing column performance. As there is no liquid phase present, the  $C_1$  term was replaced with a mass transfer term for the kinetics of adsorption and desorption,  $C_k$ . The plate-height equation for open-tubular adsorption columns is

$$\text{HETP} = \left[\frac{B}{u_0} + C_g u_0\right] f_1 + C_k u_0 f_2 \tag{1}$$

with

$$f_1 = \frac{9(p^4 - 1)(p^2 - 1)}{8(p^3 - 1)^2}$$

and

$$f_2 = \frac{3(p^2 - 1)}{2(p^3 - 1)}$$

| HETP             | = height equivalent to a theoretical plate;                         |
|------------------|---------------------------------------------------------------------|
| $B = 2D_{g}$     | = longitudal gaseous diffusion term;                                |
| D <sub>g</sub>   | = gaseous diffusion coefficient;                                    |
| $u_0$            | = linear gas velocity at column outlet;                             |
| C <sub>g</sub>   | = term of resistance to mass transfer in the gas phase;             |
| $C_{\mathbf{k}}$ | = term of resistance to mass transfer for adsorption and desorption |
| -                | kinetics.                                                           |

 $f_1$  and  $f_2$  correct for the effect of the pressure gradient on column efficiency. p = ratio of inlet to outlet pressure  $(p_i/p_0)$ . If  $x = u_0/D_g$ , eqn. 1 becomes

$$\frac{H}{f_1} = H_{g}(x) + \frac{C_k x f_2 D_g}{f_1}$$
(2)

where H is HETP and  $H_g(x)$  is a function of x.

 $D_{g}$  is calculated according to Fuller *et al.*<sup>8</sup>. For two different types of carrier gas,  $H/f_{1}$  can be plotted as a function of x. Also,  $f_{2}D_{g}/f_{1}$  can be plotted as a function of x.  $C_{k}$  can be calculated according to the equation

$$C_{\mathbf{k}} = \frac{\left(\frac{H}{f_1}\right)_{\mathbf{A}} - \left(\frac{H}{f_2}\right)_{\mathbf{B}}}{x \left[ \left(\frac{f_2 D_{\mathbf{g}}}{f_1}\right)_{\mathbf{A}} - \left(\frac{f_2 D_{\mathbf{g}}}{f_1}\right)_{\mathbf{B}} \right]}$$
(3)

where A = carrier gas A and B = carrier gas B.  $C_g$  can also be calculated according to eqn. 1.

*Results.*  $C_g$  and  $C_k$  values were calculated for 1,3-butadiene at 130°C with helium and nitrogen as the carrier gas. With  $D_g$  (C<sub>4</sub>H<sub>6</sub>, He) = 0.579 cm<sup>2</sup>/sec and  $D_g$ (C<sub>4</sub>H<sub>6</sub>, N<sub>2</sub>) = 0.178 cm<sup>2</sup>/sec,  $H/f_1$  and  $f_2D_g/f_1$  can be plotted against  $x = u_0/D_g$ . For the values x = 200, 250, 300, 350 and 400 cm<sup>-1</sup>  $C_k$  was calculated from eqn. 3 to be  $1.8 \cdot 10^{-4}$  sec.

 $C_{g}$  was calculated from eqn. 1 to be  $4.6 \cdot 10^{-4}$  sec for nitrogen and  $1.3 \cdot 10^{-4}$  sec for helium.

It can be concluded that  $C_k$  and  $C_g$  are of the same order of magnitude.

# Choice of carrier gas

*Hydrogen.* Ettre<sup>9</sup> reported the hydrogenation of unsaturated hydrocarbons on aluminium oxide-coated columns with hydrogen as the carrier gas and oven temperatures above 100°C.

Two unsaturated hydrocarbons, propyne and 1,3-butadiene, were analysed on

# TABLE I

PEAK AREA (A) OF PROPYNE RELATIVE TO THAT OF PROPANE AT 200°C Column: 50 m  $\times$  0.32 mm I.D. Al<sub>2</sub>O<sub>3</sub>-coated fused-silica PLOT. Carrier gas: hydrogen.

| P <sub>i</sub><br>(atm) | Reaction time<br>(min) | A propyne<br>A propane | Relative<br>standard<br>deviation (%) | n |
|-------------------------|------------------------|------------------------|---------------------------------------|---|
| 0.25                    | 1.301                  | 0.22                   | 2.2                                   | 4 |
| 0.50                    | 2.625                  | 0.21                   | 2.7                                   | 4 |
| 1.0                     | 5.393                  | 0.21                   | 3.9                                   | 4 |
| 2.0                     | 9.719                  | 0.22                   | 10.1                                  | 5 |

a 50 m  $\times$  0.32 mm I.D. aluminium oxide-coated fused-silica PLOT column at 200°C, the maximum isothermal operating temperature of the column with hydrogen as the carrier gas. At column inlet pressures of 0.25–2.0 bar, a gas mixture containing these two unsaturated hydrocarbons and the saturated hydrocarbon propane was analysed. The peak areas of propyne and 1,3-butadiene were related to propane (see Tables I and II).

The reaction times (retention times) were varied between approximately 1 and 10 min without a significant change in the relative peak areas of propyne and 1,3butadiene. It can be concluded that no hydrogenation of unsaturated hydrocarbons occurs at 200°C. For this reason, hydrogen is well suited for the rapid analysis of light hydrocarbons (see also *Applications*).

Helium and nitrogen. H versus  $\bar{u}$  curves for 1,3-butadiene with helium or nitrogen are shown in Fig. 1. The optima of the H vs.  $\bar{u}$  curves for helium (44 cm/sec) and nitrogen (24 cm/sec) are due to the relatively high  $D_g$  values for 1,3-butadiene at 130°C.

# Reproducibility of retention behaviour

Water strongly influences the retention behaviour of alumina<sup>4</sup>. It is obvious that an absolutely water-free carrier gas is a necessity if high reproducibility of retention times is required. A molecular sieve containing moisture filter was placed in

# TABLE II

PEAK AREA (A) OF 1,3-BUTADIENE RELATIVE TO THAT OF PROPANE

Conditions as in Table I.

| P <sub>i</sub><br>(atm) | Reaction time<br>(min) | $\frac{A_{1,3-butadiene}}{A_{propane}}$ | Relative<br>standard<br>deviation (%) | n |
|-------------------------|------------------------|-----------------------------------------|---------------------------------------|---|
| 0.25                    | 1.350                  | 0.94                                    | 2.5                                   | 4 |
| 0.50                    | 2.722                  | 0.91                                    | 5.1                                   | 4 |
| 1.0                     | 5.591                  | 0.91                                    | 2.7                                   | 4 |
| 2.0                     | 10.079                 | 0.92                                    | 2.0                                   | 5 |



Fig. 1. *H versus*  $\tilde{u}$  curves for helium and nitrogen. Capillary column: 50 m × 0.32 mm I.D. Al<sub>2</sub>O<sub>3</sub>-coated fused-silica, temperature: 130°C. Test compound: 1,3-butadiene.

# TABLE III

RETENTION CHARACTERISTICS OF TEN SUCCESSIVE ISOTHERMAL ANALYSES AT 130°C

Column: see text. Carrier gas: 1.0 bar nitrogen.

| Hydrocarbon | Mean retention<br>time (sec) | Standard<br>deviation<br>(sec) | Retention<br>index | Standard<br>deviation |
|-------------|------------------------------|--------------------------------|--------------------|-----------------------|
| Propane     | 251.1                        | 0.2                            | 300.00             | _                     |
| Propene     | 277.7                        | 0.2                            | 345.63             | 0.02                  |
| Propadiene  | 312.4                        | 0.6                            | 381.97             | 0.03                  |
| Propyne     | 528.2                        | 0.5                            | 481.31             | 0.04                  |

# TABLE IV

RETENTION CHARACTERISTICS OF TEN SUCCESSIVE TEMPERATURE-PROGRAMMED ANALYSES FROM 70°C TO 200°C (RATE 7.5°C/min)

Column: see text. Carrier gas: 1.0 bar nitrogen.

| Hydrocarbon | Mean retention<br>time (sec) | Standard<br>deviation<br>(sec) | Retention<br>index | Standard<br>deviation |
|-------------|------------------------------|--------------------------------|--------------------|-----------------------|
| Propane     | 286.7                        | 0.3                            | 300.00             |                       |
| Propene     | 363.3                        | 0.3                            | 342.79             | 0.02                  |
| Propadiene  | 439.2                        | 0.3                            | 385.15             | 0.02                  |
| Propyne     | 705.1                        | 0.4                            | -                  |                       |



Fig. 2. Analysis of  $C_1$ - $C_4$  hydrocarbons within 100 sec. Column: 50 m  $\times$  0.32 mm I.D. Al<sub>2</sub>O<sub>3</sub>-coated fused-silica. Temperature: 130°C. Carrier gas: 3 bar hydrogen. Split injection. Detection:  $8 \cdot 10^{-12}$  A f.s. For peak identification see Fig. 3.

the carrier gas line. A mixture of propane, propene, propadiene and propyne was analysed on a 50 m  $\times$  0.32 mm I.D. aluminium oxide-coated fused-silica PLOT column. Retention times and retention indices were measured for ten consecutive isothermal analyses at 130°C and ten temperature-programmed analyses from 70°C to 200°C at 7.5°C/min.

For isothermal analyses the maximum standard deviation of the retention time was 0.6 sec (relative standard deviation, 0.2%) for propane, and the maximum standard deviation in the retention index was 0.04 index unit for propyne. For temper-



Fig. 3. Separation of  $C_1-C_5$  hydrocarbons. Column: 50 m × 0.32 mm I.D. Al<sub>2</sub>O<sub>3</sub>-coated fused-silica. Temperature programmed from 70 to 200°C at 3°C/min. Carrier gas: 1.0 bar nitrogen. Split injection. Detection: flame-ionization detector,  $4 \cdot 10^{-12}$  A f.s. Peaks: 1 = methane; 2 = ethane; 3 = ethene; 4 = propane; 5 = cyclopropane; 6 = propene; 7 = ethyne; 8 = isobutane; 9 = propadiene; 10 = *n*-butane; 11 = *trans*-2-butene; 12 = 1-butene; 13 = isobutene; 14 = *cis*-2-butene; 15 = isopentane; 16 = 1,2butadiene; 17 = propyne; 18 = *n*-pentane; 19 = 1,3-butadiene; 20 = 3-methyl-1-butene; 21 = vinylacetylene; 22 = ethylacetylene.



Fig. 4. Analysis of benzene and toluene in naphtha. Column: 50 m  $\times$  0.32 mm I.D. Al<sub>2</sub>O<sub>3</sub>-coated fusedsilica. Temperature: 190°C. Carrier gas: 1.5 bar helium. Split injection. Detection: flame-ionization detector,  $4 \cdot 10^{-12}$  A f.s. Peaks: 1,2,4,6-aliphatic hydrocarbons (hexane, heptanes, octanes and nonanes, respectively); 3 = benzene; 5 = toluene; 7 = ethylbenzene; 8 = m- + p-xylene.

ature-programmed analyses the reproducibility was even better (see Tables III and IV).

# **Applications**

The column described is a powerful tool for the rapid separation of light hydrocarbons. Fig. 2 shows the isothermal analysis of a  $C_1$ - $C_4$  hydrocarbon mixture with hydrogen as the carrier gas within 100 sec. If greater resolution is required, a



Fig. 5. Analysis of 100 ppm of benzene in cyclohexane. Column: 50 m  $\times$  0.32 mm I.D. Al<sub>2</sub>O<sub>3</sub>-coated fused-silica. Temperature: 200°C. Carrier gas: 1.0 bar nitrogen. Split injection. Detection: flame-ionization detector,  $2 \cdot 10^{-12}$  A f.s. Peaks: 1 = cyclohexane; 2 = benzene.

temperature programme is used, for example from 70 to 200°C, as shown in Fig. 3, which illustrates the separation of 22  $C_1$ - $C_5$  hydrocarbons.

The elution pattern may be varied by adjusting the temperature programme. Even the analysis of heavier components, such as aromatics and aliphatic hydrocarbons up to  $C_9$ , is feasible. Fig. 4 shows the isothermal analysis of naphtha at 190°C. An interesting detail is the noninterference with the benzene and toluene peaks. Another specific application is the determination of low levels of benzene in cyclohexane. Fig. 5 shows the isothermal analysis of 100 ppm of benzene in cyclohexane at 200°C. Benzene concentrations as low as 10 ppm can be determined by split injection. For quantitation of lower concentrations (0.1–10 ppm) on-column or splitless injection is used.

# ACKNOWLEDGEMENTS

We thank Mr. W. Schneider of Veba Chemie, Gelsenkirchen Buer, F.R.G., for stimulating discussions and Miss A. Polderman for typing the manuscript.

### REFERENCES

- 1 J. J. Kirkland, Anal. Chem., 35 (1963) 1295-1297.
- 2 D. L. Petitjean and C. J. Leftault, J. Gas Chromatogr., 1 (1963) 18-21.
- 3 W. Schneider, J. C. Frohne, H. Bruderreck, J. Chromatogr., 155 (1978) 311-327.
- 4 R. de Nijs, J. High Resolut. Chromatogr. Chromatogr. Commun., 4 (1981) 612-615.
- 5 H. Bruderreck, Erdöl Kohle, 16 (1963) 847-850.
- 6 C. G. Scott and C. S. G. Phillips, in A. Goldup (Editor), Gas Chromatography 1964, Institute of Petroleum, London, 1965, p. 266.
- 7 J. C. Giddings, Anal. Chem., 36 (1964) 1170-1175.
- 8 E. N. Fuller, P. D. Schettler and J. C. Giddings, Ind. Eng. Chem., 58 (1966) 19-27.
- 9 L. S. Ettre, Open Tubular Columns in Gas Chromatography, Plenum Press, New York, 1965, pp. 108-109.